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WITT EQUIVALENCE CLASSES 
OF QUARTIC NUMBER FIELDS 

STANISLAV JAKUBEC AND FRANTISEK MARKO 

ABSTRACT. It has recently been established that there are exactly seven Witt 
equivalence classes of quadratic number fields, and then all quadratic and cubic 
number fields have been classified with respect to Witt equivalence. In this 
paper we have classified number fields of degree four. Using this classification, 
we have proved the Conjecture of Szymiczek about the representability of Witt 
equivalence classes by quadratic extensions of quadratic fields. 

1. INTRODUCTION 

This article arose as a response to questions posed by Szymiczek at the 
9th Czechoslovak Colloquium on Number Theory held at Ratkovd dolina in 
September 1989. At this colloquium he introduced the Witt equivalence invari- 
ant of an algebraic number field which, classifies number fields according to the 
isomorphism classes of their Witt rings of nondegenerate symmetric bilinear 
forms. In [7] a complete classification of cubic number fields is carried out, and 
the earlier classification of quadratic fields (due to Czogala and Szymiczek, and 
independently to Carpenter) is given a new treatment in the unifying language 
of the Witt equivalence invariant. 

Here we solve the classification problem for number fields of degree four. The 
problem consists in determining the Witt equivalence invariant for an arbitrary 
quartic field F. To this end, we divide the quartic fields into eleven classes 
according to the splitting behavior of the principal ideal (2) in F, and then we 
compute the Witt equivalence invariant in each case. It is known from [7] that 
there are exactly 29 Witt equivalence classes of quartic fields. 

The essential difficulty is to determine local levels at dyadic primes for fields 
with prescribed splitting type. The theorems in ?4 determine local levels, pro- 
vided uniformizing elements of the corresponding dyadic primes are available. 
The determination of these elements is simple if the index of the field is odd. 

Szymiczek observed that there are three classes of quartic fields where the lo- 
cal degrees are odd, and that these three classes cannot be represented by quartic 
fields having quadratic subfields. He conjectured, however, that all the remain- 
ing 26 classes can be represented by quadratic extensions of some quadratic 
fields. He even asserted that Q(x/2) and Q(v'ii) will do as base fields. 

Using the classification of quartic fields, we have constructed representatives 
of the 26 classes mentioned above, and in this way we have proved the Conjec- 
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ture of Szymiczek. Moreover, we do so using the minimal number of splitting 
types of the ideal (2). 

2. WITT EQUIVALENCE INVARIANT 

In [7] the notion of Witt equivalence invariant of a given number field F is 
introduced. We use the notation as in [7], namely 

- n is the degree of the number field F over Q; 
- r is the number of real embeddings of F; 
- s is the level of F-it is equal to zero if F is formally real, otherwise 

it is the minimal number of summands in the expressions of -1 as a sum of 
squares in F; 

- g is the number of dyadic primes PI , P2, ..., g in F, hence pi 1 2 for 
every i= 1, 2, ..., g; 

- nli, n2, ... , ng are the local degrees [Fpi Q2] of dyadic completions 
Fpj, Fp2, ..., Fpg of F over dyadicnumbers Q2; 

- S1, S2, ... , Sg are the levels of dyadic completion Fp,, F 2,... , Fpg 
It is always required that nI < n2 < < ng, and if ni = ni+I, then 

Si < Si+i - 
The ordered set of integers S(F) = (n, r, s, g; n1, ..., ng; SI, ..., Sg) is 

called the Witt equivalence invariant (shortly invariant) of the number field F. 
Theorem (2.1) of [7] gives a necessary and sufficient condition for the ordered 

set of integers S = (n, r, s, g; n1, ..., ng; SI, ..., Sg) to be the invariant of 
some number field F: 

(1) n=nfl+nfl2+ +fng; 
(2) 0 < r < n and n r (mod 2); 
(3) Si divides s for every i = 1, 2, ...,g and s = 4 if and only if Si = 4 

for at least one i, 1 < i < g; 
(4) Si = 4 if and only if ni= 1 (mod 2) for i = 1, 2, ..., g, s E 

{0, 1,2,4},Si E {1,2,4} for i =1,2,... ,g, ands = 0 if andonlyif 
r 54 0. 

Using this result, one easily determines the 29 possible Witt equivalence in- 
variants for quartic fields given in Table 1 of ?5. Our main concern is the 
converse problem: given a quartic field F, compute the invariant S(F). So, 
suppose p is a generator of F over Q and f(x) is the monic minimal polyno- 
mial of p . Then n is equal to the degree of f(x), and r is equal to the number 
of real zeros of f(x) . According to [1, Chapter IV, ?2, Theorem 3], the numbers 
g; nl, n2, ... , ng are the number and the degrees of irreducible polynomials 
in the factorization of f(x) over Q2 . The numbers g; nI, n2, . . . , ng could 
be determined already from the decomposition of f(x) into a maximal possi- 
ble number of factors modulo some power of 2 (see [1, Chapter IV, ?3, Theo- 
rem 3]). 

Therefore, the main difficulty lies in the determination of the levels s and 
SI , S2 , 9 *&,1 

3. LOCAL LEVELS 

Every local level Si takes on values from the set { 1, 2, 4}. The case si = 4 
is easily distinguished (see ?2). Therefore, the determination of Si is reduced to 
the question of whether Si = 1 or not, that is, whether the equation x2 + 1 = 0 
is solvable in Fpi . 
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Denote by D the integral closure in F of the valuation ring associated with 
the prime 2 in Q. Then there are exactly g nonassociated prime elements 
7rI 2 ... , 7(g in D which correspond to dyadic primes Pi, P2, ..., g in 
F (see [1, Chapter III, ?4, Theorem 7]). 

According to [1, Chapter IV, ? 1, Remark 2] the above equation is solvable if 
and only if the congruence x2 + 1- 0 (mod P 2e,'+) is solvable in Fp, , where 
ei is the ramification index of pi It is easy to see that we can search x in 
the form x = bo + b,7i + b2r + **+ beizr e, where bo, b1, ..., be, represent 
elements from the residue class field of integers from F modulo p. 

In the case ei = 1 we cannot have si = 1 because of the following result. 

Lemma 1. If ei = 1, then x2 + 1 = 0 (mod p3) is not solvable. 

Proof. In this case already the congruence x2 + 1- 0 (mod p?) does not have 
a solution. Let x = bo + biri with bo, b1 as above. Then b 2= -1 (mod ri) . 
The multiplicative group of the residue class field modulo pi has odd order, 
and therefore bo = 1 and x = 1 + bh7im. From (1 + bizr)2 = -1 (mod ir?) 
we have 2 0 0 (mod 7ir), hence 7ir divides 2, which is a contradiction with 
ei=1. 5 

In what follows we will denote by A the index of the generator p of the 
field F. This is the index of the order generated by 1,, p, p2, ... , pn- 1 in the 
maximal order of F. 

In the case when A is odd, the determination of local levels is simple. We 
will illustrate this in the next section when dealing with quartic fields. Here we 
state some preliminary material. 

Case A -1 (mod 2). The theorem of Kummer [2, Chapter 3, Appendix] gives 
the splitting of the prime 2 in F and generators for prime ideals PI1, P2,... Pg 
If A is odd, 

g 

f(x) IfI vj (x)ej (mod 2) 
j=1 

is the decomposition into irreducible factors, and Gj(x) E Z[x] are such that 
Gj(x) _ pjo(x) (mod 2), then (2) = l~19I p,5', where pj = (2, G1(p)) . 

Now we are able to determine prime elements r1, I2, ... , g of D for 
which we have 2 =g. 7.e r * 7 e2 * . * eg , where e is a unit in D?. 

Lemma 2. Suppose A is odd. If ei $A 1, then we can choose 7}c = Gj(p); if 
ei = 1, then 7ci = Gj (p) or 7ir = Gj (p) + 2. 
Proof. We use the following criterion: an element a can be chosen as 7}c if 
and only if a E pj\pI2 and a , pi for every i 54 j. En 

Remark. We can decide whether 7rj = Gj(p) or 7rj = G(p) + 2 by computing 
norms. The number a satisfying v2(NF/Q(a)) = fj = nj/ej = nj, where v2 is 
the dyadic valuation in Q, can be chosen as 7y . 

Using the following result, we can decide whether A is odd or even. 

Lemma 3. The index A of p is odd if and only iffor every nontrivial divisor 
h(x) (mod 2) of the polynomial f(x) (that is, f(x) - g(x)h(x) (mod 2)) there 
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is a polynomial h'(x) such that h'(x) _ h(x) (mod 2), degh'(x) = degh(x), 
and NFIQ(h'(p)) 0 0 (mod 2). 
Proof. (1) Suppose A is odd. Let 

g 

f(x) JJ pj (x)'I (mod 2) 
j=1 

be a decomposition into irreducible factors. Using Lemma 2, we choose the 
polynomial GJ(x) such that GJ(x) _= V(x) (mod 2) and lj = GJ (p). For 

g 

h(x)-II fJ ((x)mi (mod 2) 
j=l 

we choose 
g 

h'(x) = FI GJ (x)mJ. 
j=1 

Then v2(NF/Q(h'(p))) = I fjmj < n because degh(x) < n, and there- 
fore 

NF/Q(h'(p)) 0 0 (mod 2n). 
(2) According to [6] an integral basis of the field F can be chosen in the 

form 
WJ k = gk-I (P) fork=,... , n, 

dk-1 

where gk(x) e Z[x], dk E N, deggk(x) < k, go(x)= 1, and dk-l\dk. 
Moreover, if dk = ckdkl , then the polynomial gk(x) is a divisor of f(x) 

modulo Ck. If A is even, then some Ck is even, hence gk(x) divides f(x) 
modulo 2 and the number gk(p)/2 is an integer in F. According to our 
assumption there is some polynomial h'(x), h'(x) _ gk(x) (mod 2), such that 
NFIQ(h'(p)) - 0 (mod 2n). Since gk(p)/2 is an integer in F. the number 
h'(p)/2 is also an integer in F, contradicting NF/Q(h'(p)) $ 0 (mod 2n). n 

The usefulness of this lemma will become apparent in the next section. 

4. NUMBER FIELDS OF DEGREE 4 

The invariant S(F) of a quartic field F will be determined depending on 
the splitting type of the ideal (2) in F. The following 11 splitting types are 
possible: 

(1) (2)=p2; f=2; e=2. 
(2) (2)= p4; f = 1; e = 4. 
(3) (2) = plp2; f1 = 2; f2 = 1; e1 = 1; e2 = 2. 
(4) (2)= p2p2; fi =;f2= 1;el =2;e2=2. 

(5) (2) = PI12 32; f1 = f2 = f3= l; el = e2= l; e3= 2. 

(6) (2)=p; f=4;e=l. 
(7) (2) = PIP2; f1 = 2; f2= 2; el = 1; e2 = 1. 

(8) (2) = PI1P2; f] = l; f2= 3; el = l; e2 =. 

() (2) = Pp2p; f, = 1 ; f2 = 1; el = 1; e2 = 3. 
(10) (2) =I1PI2P3; fJ =f2 = l; f3=2; el =e2=e3=l. 
(11) (2) = P1IP2P3P4; fI = f2 = f3 = f4=el =e2 = e3 = e4 =L. 
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If a splitting type is given, then the parameters g and nI, n2, ..., fg are 
immediately determined. 

Real embeddings. If F = Q(p) and p is a zero of the polynomial f(x) = 

X4 - sx3 + pX2 - qx + n, then r is equal to the number of real roots of f(x). 
Denote by D the discriminant of the polynomial f(x). Then 

27D = 4(p2 - 3sq + 12n)3 - (2p3 - 72pn + 27s2n - 9spq + 27q2)2. 

The number of real roots of f(x) is given by the following formulae (see [3, 
Chapter I, ?37; 4, Part 2, Chapter 1, ?1]): 

(a) r = 4 if and only if D > 0 and simultaneously the following condition 
"C" holds: 

"C": p - _5 <0o, p2 - s2p + 3 
S4 + sq - 4n > 0. 

(b) r = 0 if and only if D > 0 and simultaneously condition " C" does not 
hold. 

(c) r = 2 if and only if D < 0. 

Global levels. As we have already mentioned, s E {0, 1, 2, 4}; we have s :$ 0 
if and only if r = 0, that is, f(x) has no real zeros; s = 4 if and only if 
some local level si = 4. Therefore, the determination of s is reduced to the 
question of whether the equation x2 = -1 is solvable in F. that is, whether 
the imaginary unit i belongs to F. If so, then F is a quadratic extension of 
Q(i), hence p is a zero of the polynomial x2 + (a + bi)x + c + di, where b $ 0 
or d 5$ 0 and a, b, c, d E Z. Then p is a zero of the polynomial 

X4 + 2ax3?+ (a2 + 2c + b2)x2 + 2(ac + bd)x + c + d2. 

Conversely, if f(x) can be written in the above form, then s = 1 . 
If a prime p _ 3 (mod 4) does not divide the discriminant D of the poly- 

nomial f(x), and the congruence f(x) 0 O (mod p) has a solution in Z, 
then F does not contain i (hence s 54 1 ) because in this case the congruence 
x2 = -1 (mod p), where p'\p is a prime divisor in F, is not solvable. On the 
other hand, if s $ 1, then according to [5, Theorem 7.12] there are infinitely 
many such primes p. 

Local levels. According to ?2 and Lemma 1, when the splitting type of (2) is 
any of 8, 9, 10, or 1 1, then necessarily all the local levels si are equal to 4, and 
when the splitting type of (2) is 6 or 7, the local levels si are equal to 2. 

Therefore, it is necessary to investigate the remaining splitting types 1, 2, 3, 
4, 5. 

If the splitting type of the prime ideal (2) in the field F is 1, 2, 3, or 4, 
then according to [5, Theorem 4.1 1 ] there is an element p E F which generates 
F and whose index is odd. If the splitting type of (2) in F is 5, then again 
according to [5, Theorem 4.11] such an element p with odd index does not 
exist. 

In the sequel we will show how to determine local levels si in the cases 1, 2, 
3, 4, 5. 

In cases 1-4 we will assume that a number p with odd index is available. 
Case (1) corresponds to the decomposition 

f(X) (X2 + X + 1)2 (mod 2). 



360 STANISLAV JAKUBEC AND FRANTISEK MARKO 

Theorem 1. Suppose f(x) =- (x2 + X + 1)2 (mod 2). If A is odd, then the 
congruence x2= -1 (mod r5) has a solution if and only if one of the following 
conditions is satisfied: 

(i) s--2, p_ l, qO, n- 1 (mod 4); p +q-=-1 (mod,8). 
(ii) s -- 0 p _1, q _2, n _1 (mod 4); s + p - n=-O0 (mod 8). 

(iii) s- 0, p-=35 q-O. n-1 (mod 4); -s + q + n=- 1 (mod 8) . 

Proof. We have 

7r= p2+ p+ 1, p4 =sp3 -pp 2+qp-n, 

and 
7r2 = (s + 2)p3 + (-p + 3)p2 + (q + 2)p + (-n + 1). 

Since f(x) = (x2 + X + 1)2 (mod 2), the following numbers are integers: 

s +2 P +3 
Q 

q +2 N--n+l 
2 2 2 N= 

Let A =Sp3 +pp2+ Qp+N. Then 2A-=r2 and 

A = 7r[Sp + (P -S)] + (Q - P)p + N - (P - S). 

We have three possibilities for A: 

(i) A 1 (modzr). 
(ii) A _p (mod z). 

(iii) A I + p (mod 7r) . 
First we consider case (i) . In this case we have 

(*) Q _ P (mod 2), N - (P - S) 1 (mod 2), 

and A = 1 + rul I+ 2u2, where 

ui =Sp+(P-S) and u2= Q-P p+ 2-(P-S)- 

Our task is to solve the congruence (bo + b7r + b27r2)2 -1 (mod 7r5), where 
bo, b1, b2 E {O. 1, p, p + }I - 

As in the proof of Lemma 1, we have bo = 1. From the congruence 

(1 + b1r + b27r2)2 -l (mod 7r5) 

we obtain 
2+b 2g2+b 2,4+2bor +2b2r2 _O (mod i5). 

If we multiply this by A we find 

72 + Ab27r2 + Ab 2 r4 + b 7r+ b27r4 0 (mod r5), 

I +Ab 2+ b7r + i2(b2+Ab2) _0 (modr3), 

and 
1 + b 2(l + 7u1 + 2u2)+ b7r + 7r2(b2 +Ab2) 30 (mod i3). 

Therefore, b1 = 1 , which means that 

2 2u2+7ru1 + r+ir2(b2+Ab 2) _O (mod 7F3). 

Multiplication by A gives 

72(l + u2) + 7A(u +l1) + 7r2(Ab2+ A2b2) 0 (modn 3) 
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and 

(**) A(1 + u1) + ir(l + u2) + ir(Ab2 +A2b) 2) 0 (mod z2). 

Therefore, 1+ u_ 0 (mod r), and this means that S -0 (mod 2), P _ I 
(mod 2). 

From (*) we obtain Q =1 (mod 2) and N -0 (mod 2). From (**) we 
deduce 1 +U2+b2+b2 _O (mod r) . For b2 E {O, 1, p, p + l} the expression 
b2 + b2 takes on values 0 and 1. Therefore, U2 -0 (mod 7r) or U2 
(mod 7), and this implies (Q - P)/2 _ 0 (mod 2). 

We have proved that in case (i) the congruence x2 -1 (mod 75) has a 
solution only if S = 0 (mod 2), P _ 1 (mod 2), Q 1 (mod 2), N -=O 
(mod 2), and Q _ P (mod 4). 

It is easy to see that the converse implication is also correct. If we substitute 
the expressions for S, P, Q, N, we obtain the statement of the theorem. 

In cases (ii) and (iii) we proceed analogously. 5 

Case (2) corresponds to the decompositions 

f(x) = X4 (mod 2) and f(x) = (X + 1)4 (mod 2). 

Theorem 2. Suppose f(x) = X4 (mod 2). Then A is odd if and only if NF/Q(p) = 

n _ 2 (mod 4). Moreover, if A is odd, then the congruence X2= -1 (mod 79) 
is solvable if and only if one of the following conditions is satisfied: 

(i) s_ 0, p2, qO0 (mod 4); n 2 (mod 8), 
(ii) s 2,p 0,q O(mod4); n 2 (mod8). 

Proof. The first part follows from Lemmas 2 and 3. 
We take 

2' P 2 ' Q= 2' N=y' 
2' ~~2 

2 
A = Sz3+ Pir2 + QOr + N = 7r(S7r2 + Pr + Q) + N - 1 (mod r), 

and 
L = S7r2 + P7r + Q. 

We have to solve the congruence 

(bo + b7r + b27r2 + b37r3 + b47r4)2--1 (mod r9), 

where each bi = 0 or 1. It is easy to see that the solution has to be in one of 
the forms 

(i) 1+ r2 + b47r4; 
(ii) 1+7r22+ 7r3+b47r4. 

We first deal with case (i) . Here (1 + 7r2 + b4ir4)2 = -I (mod 7r9), hence 

2 + ir4 + b2r8 + 27r2 + 2b4ir4 0 (mod ir9). 

We multiply by A and obtain 

4+ Ar4 + 6+ r8(b4 + b42A) 0 (mod 7r8) 

Since b4 + b 2AO(modir),wehave 1+N++rL+i +2 = O (mod r5). If we 
put N1 = (1 + N)/2 and multiply the congruence by A, we obtain 

A(S7r2 + Pir + Q) + Air + N1r3 0 O (mod 7r4). 
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Hence, Q 0 0 (mod 2), and in this case Q 0 (mod r4), therefore 

A(1 +P)+ASzr+NN7r2 -O (mod r3). 

We must have 1 + P 0 0 (mod 2) and AS + N1 X7 0 (mod r2), and therefore 
S -0 (mod 2) and N1- 0 (mod 2). 

Finally in case (i) the original congruence has a solution if and only if S 
O, P-= 1, Q- 0 (mod 2) and N1 0 0 (mod 2). From this we obtain the 
statement of the theorem. 

Case (ii) is analogous. 5 

Remark. If f(x) = (x + 1)4 (mod 2), we can change the generator p to p - 1 
and transform the equation f(x) = 0, using the substitution z = x + 1, and 
then we can use Theorem 2. 

Case (3) corresponds to the decompositions 

f(x) -x2(X2 + X + 1) (mod 2) 

and 
f(x) (x+ 1)2(X2 + X + 1) (mod 2). 

Theorem 3. Suppose f(x) -= x2(X2 + X + 1) (mod 2). If A is odd, then the 
congruence X2 = -1 (mod i5) has a solution if and only if q -0 0 (mod 4) and 
n+2p 4 (mod 8). 
Proof. We choose r = p. Again, 

p4 = sp3 _ pp2 +qp-n 

and 

p2(p2+p+ 1) p4 +p3 +p2 = (s+ 1)p3 + (-p_ +1)p2 + qp-n. 

In this case we put 

=s +1 P -p +l Q q N=-n 
2 2 2' 2 

A = Sii3 + Pn2 + Q7r + N 

and have 
A=ir(S7r2 + Pn + Q) + N 1 (mod 7r). 

That is, A = Lir+N, where L = SUr2-+Pi-+ Q. Moreover, 7r2(7r2+ir+ 1) = 2A. 
We solve the congruence 

(ho + b,7r + b2ir2)2 -1 (mod 7r5). 

It is easy to find that bo =b = 1, hence 

(1+ir +b2r2)2 -1 (mod ni) 

and 
2 + 7r2 + 27r + b27r4 + 2b2ir2 = 0 (mod 7r5). 

If we multiply this congruence by A we obtain 

(r2 +i3 + r4b2)(r+ 7+ + 1) + Ar2 + b2 A7z4 0 O (mod 7r5). 

From this we deduce that 1 + A 0 O (mod 7r3). 
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If we substitute for A we have 

1 +N+7r(S7r2 +P7r+Q) 0_ (mod r3). 

We put N1 = (1 + N)/2 and obtain 

2N1 + 7r(S7r2 + p + Q) O (mod i3), 

2N1 + pr2 + Q7r =O (mod r3). 

Multiplying by A, we obtain 

72(72+ + 1)N1 +PAzr2+QA7r=O (mod 7r3), 

QA + PAr +7rNi _ O (mod i2). 

Therefore, Q 0_ (mod 2), and from this PA + N1 0 (mod r) and P + N1 
O (mod 2). 

This means that Q=O (mod 2) and P + N1 =O(mod 2). 
If we substitute back for P, Q, and N1, we obtain the statement of the 

theorem. c 

Remark. If f(x) = (x + 1)2(x2 + X + 1) (mod 2), then we can proceed analo- 
gously as in the preceding remark. 

Case (4) is considered in the following theorem. 

Theorem 4. Suppose f(x) _ x2(X + 1)2 (mod 2). Then A is odd if and only 
if n=2 (mod 4) and n + s + p + q =1 (mod 4). In this case the congruence 
x2=_ -1 (mod 7r5) has a solution if and only if q - 2 (mod 4) and n + 2p 
O (mod 8), and the congruence X2=_ -1 (mod 52) has a solution if and only if 
s+q=-O(mod4) and s+p-q-n-1 (mod 8). 

Proof. The proof of this theorem is analogous to the preceding one. 5 

Remark. If A is odd, then we could solve the question about the solvability 
of the equation x2 = -1 in local fields Fp, where , 1 2 and , is ramified, 
analogously also in the case when the degree of the field F is greater than 4. 
For small n, say n < 10, the problem would not be too complicated because 
there are only a few irreducible polynomials modulo 2 whose degree is less 
than or equal to 5. The problem would be more complicated for large n, in 
which case there are many irreducible polynomials modulo 2 with degree less 
than or equal to n/2, and we would have to consider too many cases. If we are 
interested only in representatives of Witt equivalence classes, then it is possible 
to consider even larger n. 

We now consider case (5) corresponding to the splitting (2) = P2P3 
Let d be the greatest integer such that 2d divides the discriminant D of 

the polynomial f(x). 

Theorem 5. (A) Suppose (2) = P1P2P 2 is the splitting of the ideal (2) in F. 
Let f(x) = X4 sx3 +px2 - qx + n be the minimal polynomial of a uniformizing 
element 7r3 corresponding to the dyadic prime p3. Then 

(1) n =_ 2 (mod 4). 
(2) f (x) 

= X2 (X + 1)2 (mod 2). 
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(3) The congruence X2 -1 (mod 7rk) is solvable if and only if q = 
2 (mod 4) and n + 2p 0 (mod 8). 

(B) Conversely, let F = Q(p) and p be a zero of the polynomial f(x) = 
x4-sx3+px2-qx+n x2(x+ 1)2 (mod 2). Suppose further that n _ 2 (mod 4), 
d > 1 (that is, the discriminant D is even), and there are nontrivial monic 
polynomials fi(x), f2(x), f3(x) such that f(x) _ fi (x)f2(x)f3(x) (mod 2d+1). 

Then (2) = PI1 P2P2 is the splitting in F and p can be chosen as a uniformizing 
element of P3 . 
Proof. (A) (1) The inertion degree f3 of the prime divisor P3 equals 1 , hence 
N(P3) = 2, and this implies N(7r3) 2 (mod 4). 

(2) We have 

-n 7r4-s 7r3+ pir 2-q 7r3 _2 q n =73 - 73 + 73 - 
r _? SKr3 + P - x 

7r2 7r2 ~ 73-57 7+-- 
3 3~~~~~~~~~~~~~~~~( 

Therefore, q is even and x2 divides the polynomial f(x) modulo 2. Accord- 
ing to [1, Chapter IV, ?2, Theorem 3 and Chapter IV, ?3, Theorem 3] there is 
a decomposition 

f(x)- f (x) f2(x)f3(x) (mod 2d+1), 

where deg f3(x) = 2. 
If x3 divides f(x) (mod 2), then at least two of the polynomials fi (x), 

f2(x), f3(x) are divisible by x (mod 2). This is a contradiction with n 
2 (mod 4) and d > 1. 

If f(x) = X2(X2 + X + 1) (mod 2), then f3(x) = x2 + x + 1 (mod 2) because 
the polynomial x2 + x + 1 is irreducible modulo 2. Therefore, fi (x) _ x 
(mod 2) and f2(x) - x (mod 2), contradicting n _ 2 (mod 4) and d > 1. 
Hence, f(x) x2 (x + 1)2 (mod 2). 

(3) The proof of this part is analogous to that of Theorem 4. 
(B) Since n _ 2 (mod 4), f(x) = X2(X+ 1)2 (mod 2), and 4 divides 2d+1, 

it is impossible to satisfy the congruence 

f(x) - (x + ai)(x + a2)(X + a3)(x + a4) (mod 2d+l). 

From the congruence f(x) _ fi (x)f2(x) f3(x) (mod 2d+I ) and [1, Chapter IV, 
?2, Theorem 3 and Chapter IV, ?3, Theorem 3] we obtain that the prime 2 is 
divisible by three different prime divisors of the field F. 

From the congruence N(p) 2 (mod 4) it follows that p is a uniformizing 
element of some of these prime divisors. Since 

f (x)-x2(x + 1)2 (mod 2), 

the number q is even and we infer that p2 divides 2 because 

-n p4 - sp3 +pp2 - qp 2 q 

Therefore, (2) = PIP2P 2 in F, and p is a uniformizing element of the prime 
divisor P3 5l 
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5. CONJECTURE OF SZYMICZEK 

In this section we will show that the Conjecture of Szymiczek stated in the in- 
troduction is true. We will give a list of representatives of the 26 Witt eqivalence 
classes, which confirms this conjecture. 

We will use only the following four splitting types of the prime ideal (2): 

(1) (2)=p2; f=2;e=2. 
(2) (2) =p4; f = 1; e = 4. 
(3) (2)= p1p2; ffi = 2; 2 = 1; el = 1; 2= 2. 
(4) (2) = p2p2; fi = 1; f2 = I ;el = 2; e2 = 2 

It is clear that this is the minimal number of splitting types which are nec- 
essary to cover all Witt equivalence classes in Table 1 below except lines 8, 12, 
20. 

Lines 8, 12, 20 are empty in Table 1 because every field F which represents 
one of these lines cannot contain any quadratic subfield. This is due to the fact 
that local degrees are multiplicative and one of the local dyadic degrees of such 
a field F has to be equal to 3. 

For the sake of completeness we give some representatives of these classes in 
Table 2 at the end of the paper. 

Let p be a root of the equation x2 + (a + bw)x + (c + dw) = 0, where 
b #4 0 or d 5# 0, a, b, c, d are integers, and co = X or Cl = (1 + )/2, 
respectively. Then p is a zero of a polynomial 

(***) f(X) = X4+ 2ax3 + (a2 + 2c - 2b2)x2 + (2ac - 4bd)x + (C2 - 2d2) 

or 

f(X) = X4+ (2a + b)x3 + (a2 + ab - 4b2 + 2c + d)x2 

+(2ac + bc + ad - 8bd)x + (C2 + cd - 4d2), 

respectively. 
If the polynomials (***), (****) are irreducible in the ring Z[x], then the 

field F = Q(p) has degree 4 over Q and it contains the quadratic subfield 
Q(v 22) or Q(V/1 7), respectively. 

The fields F which correspond to the polynomials given in lines 1-7 in Table 
1 contain the subfield Q(V'2), and the fields corresponding to the polynomials 
in lines 8-29 except 8, 12, 20 contain the subfield Q(v/i77). 

The values a, b, c, d displayed in Table 1 are numbers which appear in 
coefficients of the polynomials (***) and (****). 

All representatives in Table 1 except lines 27, 28, 29 were constructed using 
the theorems in ?4. 

The fields in lines 27, 28, 29 were found on the basis of [1, Chapter IV, ?2, 
Theorem 3 and Chapter IV, ?3, Theorem 3], where 

f(x) --x(x + 1)(x + 2)(x + 3) (mod 32). 

The irreducibility of the polynomials in Table 1 was checked by the Eisenstein 
criterion, or using Berlekamp's algorithm, or taking into consideration the real 
quadratic subfield and the presence of complex elements in the field F. 
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TABLE 2 

type n r s g ni Si polynomial f(x) 

8. 4 4 0 2 1, 3 4, 4 x4 + 5x3 + x2 - 7x - 2 

12. 4 2 0 2 1, 3 4, 4 x4 - 3x3 + x2 - 3x + 2 

20. 4 0 4 2 1,3 4,4 x4+x3+x2+x+2 
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